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A SPECTRAL METHOD FOR THE VORTICITY EQUATION 
ON THE SURFACE 

GUO BEN-YU 

ABSTRACT. A spectral scheme is proposed for the vorticity equation defined on 
the spherical surface. Generalized stability and convergence are proved. The 
approximation results in this paper are also useful for other nonlinear problems. 

1. INTRODUCTION 

Since the spectral method has convergence rate of "infinite" order, it has be- 
come one of the most powerful tools for the numerical solution of nonlinear 
partial differential equations arising in fluid dynamics, e.g., see [2, 4, 5, 7, 8, 12, 
13, 16, 17]. Many authors provide various spectral schemes and analyze the er- 
rors. Usually, only nonlinear problems in Descartes coordinates are considered. 
But in meteorological science and some other fields (see [9-11, 19]) one also has 
to deal with problems defined on the spherical surface. As pointed out in [2], 
so far, no rigorous approximation theory is available for spectral methods in 
spherical polar coordinates. Thus, it is desirable to develop the spectral method 
for spherical surfaces theoretically. In this paper, we take the vorticity equation 
as an example to show how to deal with such problems. In ?2, we construct the 
scheme by using spherical harmonic functions. In ?3, we list a series of lemmas 
which play a fundamental role in the theoretical analysis. Finally, we prove 
generalized stability and convergence of the scheme. 

2. THE SPECTRAL SCHEME 

Let S be the unit spherical surface, 

S= (j, 0): O<A<<27r,-7 <0< -} 2 - 2. 

where A and 0 are the longitude and latitude. Let g(A, 0, t), yt(A, 6, t) and 
v > 0 be the vorticity, the stream function and the kinetic viscosity coefficient, 
respectively. The gradient, the Jacobi operator and the Laplace operator are as 
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follows: 

1 p~a 0~i 
Cos= (0 Da A a A 

___) oa K 1 a 2 

AX =1C a60(cosH0) + 0 aA2' 

The vorticity equation is of the form 

[ X + J(4 )v2 i (1, 0) E S, t E (O, T], 
(2.1) -AV= + f2, (, 0) E S, t E [O, T], 

t4(A , S ,O0) = 4O(A,0), (A1,0)eS, 
where fi, f2 and 'o are given functions. It is natural to assume that all func- 
tions have period 27r for the variable A, and are regular at 0 = + 2. For fixing 
,y, we require in addition that 

(2.2) u(yi(t)) J | O, t) dS _ O. 

We shall consider the weak representation of (2.1). Let D(S) be the set of 
all infinitely differentiable functions which are regular at 0 = ? ' and have the 
period 27r in the variable A. The duality of D(S) is denoted by D'(S). We 
define generalized functions u E D'(S) and their derivatives in the usual way 
as in [15]. Furthermore, we can define the generalized gradient, the generalized 
Jacobi operator and the generalized Laplace operator. For instance, if 

JjuAv dS= vudS, Vv E D(S), 

then the mapping A such that -a = Au is called the generalized Laplace opera- 
tor. For simplicity, we denote A by A, etc. 

Now, let 
L2(S) = {u E D'(S): ilull < o} 

with the inner product and the norm being as follows: 

(u, v) = juv dS, lull = (u, u)'!2. 

Furthermore, let 

H' (S) = {u: u, 
I au au E L2(S)} 

with the following seminorm and norm: 

lul ( C A + 
a 

2)1/, Ilull, = (llull2 + lull 

For positive integer r, we can define the space Hr(S) with the norm hr 
similarly. In particular, the norm of H2(S) is equivalent to (see [15]) 

(11u112 + llAuII2)12. 
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For real r > 0, the space Ht(S) is defined by complex interpolation between 
the space H[rJ(S) and H[r+l (S), [r] being the integral part of r. Clearly, 
HO(S) = L2(S) and Ilullo = liull. Besides, let llullr,oo = llUllCr(s) and hlull = 
IUI10, . 

It can be verified that 

-(Au, v) = (Vu, Vv). 

Thus, the weak version of (2.1) is to find (, ) E H1 (S) x H1 (S) such that 
for all v E H' (S), 
(2.3) 

(Rat(t), V) + (J(,(t), t V(t)), V) + V(V?(t), VV) = (f2(t), V), t E (O, T], 

CV (V/(t) 'VV) =((t) + f2 (t),i V) t E [0, T], 

M(0) = cO- 

The existence and uniqueness of the solution of (2.3) was discussed in [19]. 
Indeed, we can follow a technique similar to the proof of Theorem 6.10 in [ 1 4] to 
show that if fi E L?Q (0, T; L?? (S)), f2 E L2 (0, T; L2 (S)) and co E L??(S), 
then (2.3) possesses a unique solution 4 E L2(0, T; H1(S)) with Oa/Ot E 
L2(0, T; H-I (S)), H- I(S) being the duality of HI (S) . 

We now turn to constructing the spectral scheme for (2.3). First, let Ln(z) 
be the Legendre polynomial of degree n, 

4(z) = 1n d (z 1- 
n 

2nn! dzn ( ) 

The normalized associated Legendre function is defined as 

m,n ( 2()(n )! / 1nd-mLn(Z)m m>02n?lmld 

Lm, n(Z) = Lm, n(Z), m < 0, n > Iml. 

Furthermore, the spherical harmonic Ym ,n(, 6) is 

Ym,n(l, H)= eimALm,n(sin6 ) n > lml. 

It can be verified that (see [3]) 

(2.4) -AYm,n (, 6) = n(n + 1)Ym,n(AZ, 6) 

and 

J2r Jx/2 m 1 if m =m', n =n', 
J Ym, n (A f9)Ym1 n,(A, 0),cos OdddA =i0 otherise 

We set 

Um,n = jJu0)(Y. n(A 0)cos69d6dL 

Let 
VM = span{Ym,n: Iml < M, imi < n < N(m)}, 

where N(m) determines the construction of spectral approximation. Usually 
we take N(m) = M or N(m) = M+ ml. For simplicity, suppose N(m) = M. 
Let VM be the subset of VM containing all real-valued functions. 
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Let PM be the orthogonal projection from L2(S) onto VM such that for any 
U E L2(S) 

(PMU-U,V)=O, VV E VM, 
or equivalently, 

PMU= Z Um,nYm,n(, 6). 
JmJ<M n>imi 

Let z be the mesh size in the variable t, and 

AT {t =kT: 1 < k < 
T' 

RT = AT U {0}. 

Define 

3TU(A~, 06 t) = -(u(A, 0, t + T) -uQ, 6,i t)). 

Let (?1 , p) E VM x VM be the approximation to (V, vi) and b and a pa- 
rameters with 0 < b, a < 1 . The spectral scheme for (2.3) is as follows: 

(3Tiq(t) , v) + (J(1(t) + bcT5U(t), (t)), v) 

I -v(A(n(t) + aT6Tn(t)), V) = (f1(t), V), VV E VM, t E ,t 
(2.5) -(Ap(t), v) = (?(t) + f2(t), v), VV E VM, t E RT 

|((P(t))=0, VteR5, 

?1(0) = PM4O. 

Clearly, if b = a = 0, then (2.5) is an explicit scheme. If b = 0 and a :# 0, 
we still can obtain the value of 1(t) explicitly by the orthogonality of spherical 
harmonic functions. Indeed, this is one of the advantages of spectral methods. 
Otherwise, the scheme is implicit, and so an iteration is needed for evaluating 
i7(t) at each t e R-. 

We now consider the existence and uniqueness of the solution of (2.5) with 
b # 0. We have 

(2.6) (n((t), v) + bT(J(n(t) , (P(t - T)), v) - VT(A?I(t), v) 
= (F(t)v), VVEVm,tERT, 

where 
F(t) = 1(t - T) - T(l - b)J(I(t - T), (P(t - T)) 

+ VT(1 - a)A1(t - T) + Tf1(t -T) 

Clearly, this is a linear algebraic system for the unknown coefficients of the 
spherical harmonic expansion of i7(t). Thus, we only have to show that the 
equation 

(Z, v) + bT(J(Z, (), v) - vaT(AZ, v) = 0 
has only the trivial solution. By taking v = z, we obtain from Lemma 6 (see 
?3 of this paper) that 

liZ112 + vaT[Z]2 = 0 

and thus Z- 0. Therefore, 67(t) is determined uniquely at each time t E R-. 

3. SOME LEMMAS 

For analyzing the errors, we need some basic estimates. In this section, 
we prove several lemmas. Throughout this paper, we denote by c a positive 
constant independent of M, T and any function, which may be different in 
different occurrences. The notation " c," means the embedding of spaces. 
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Lemma 1. We have H8(S) c; Hr(S) for 0 < r < fl and H1+fl(S) c C(S) for 
/B>0. 

Proof. The first assertion follows directly from the definition. We now prove 
the second one. Let B be the unit ball in the three-dimensional Euclidean 
space, and w a function defined on B. We denote by y(w) the restriction of 
w on S. We can take H1+f8(S) to be the trace space of H32lfli(B) equipped 
with the norm 

IUI11Hl+f (S) = inf 11w 11H312+fi(B). 
WEH 3/2+f (B) 

y(w)=u 

By embedding theory, H3I2+f8 (B) c; C(B), and so for any w E H312+f8(B) 

IIWIIC(B) < CIIWIIH3/2+fl(B) 

On the other hand, for any u E H1+fl(S), there exists w E H312+,8(B) such 
that y(wi) = u and 

1IU11HI+p0(S) > 1 1lW1H3/2+0(B). 

Therefore, 

jjuj C(s) = sup ju(x)j = sup 1T(x)t 
XES XES 

< sup |W(X)| < CIIWIIH3/2+fi(B) < 2CIIUIIH1+fi(S), 
XEB 

which implies the second assertion. o 

Lemma 2. There exists a positive constant c such that Ilull < clulI for all u E 
H1(S) with ,u(u) = 0. 
Proof. By the Poincare inequality, we have 

1jul12 < c2(u(u) + IU12), 

and so the claim follows. 0 

Lemma 3. If u E L2(S), v E H1I+(S) and > 0, then 

lluvll < cjlull IIVII1I+f 
Proof. By Lemma 1, 

Viusl < CllUI121lUVlo2 < CllIlIUI121101 

Lemma 4. If u E VM and 0 < r < f, then 

IjuIII < cMfl-rIIuIr. 

Proof. Let 
M M 

U Z EUm,nYm,n(AX 6). 
m=-M n=lml 

By (2.4), Ym ,n(, 6) is the eigenfunction of the operator -A on S, corre- 
sponding to the eigenvalue n(n +). Thus, for the space Hr(s), the norm liv Ir 
is equivalent to (see [15]) 

/00\I/ 
(3.1) xE nr(n + 1)rlvmnl 1/2 

\m=-oo n>lml 
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Then 
M M 

||U|I2 < C n E (n + 1)fl|u-m 1 
m=-M n=lml 

M M 

< CM2fi-2r E E nfr(n +l)rIUmn12 

m=-M n=lml 

? CM2.8-2rjjU112 0 

Lemma 5. If u E H(S) and r < f, then 

jju - PMUlIr ? CMrfihUIIfi, 

IIPMUIIr < CIjUllr. 
Proof. By (3.1), 

M 00 00 

MU12 < ?C n r(n +j+)r Im,Un12+C Z flr(nf+l)rIUI2 
m=-Mn=M+l Iml>M n=lml 

M 00 +o 
? c nz(n + l)riUm, n12 + C Z ( n l)um,n 

m=-Mn=M+l Iml>M n=M+l 

< CM2r2PE Z nfl(n + 1)flum,nI2 
m=-oo n=M+1 

< cm r2fllII 

The second inequality follows from the first with / = r by using the triangle 
inequality. Oi 

Lemma 3 and Lemma 4 are the approximation and inverse inequalities for 
spherical harmonics. In [1], Bramble and Pasciak gave similar results with 
different proofs. 

Lemma 6. If u, v E H1 +f(S), w E H1 (S) and > O, then 

(u, J(v, w)) + (v, J(u, w)) = 0. 
Proof. We have 

~27r 7/2 /9V0aW 9VW dadw 
(u, J(v, w))= ; u _ d dA 

JOJ-rn/2 (T d /0 
fThf7/2(~1 ~ OO 

- IOI-~/2%/2 

_;2n (l7t)( 7) a W (27t)d 

+j u (l, - v (A,-2- A8, (,)dA 

We know from the regularity of w that w approaches the limits independently 
of, A, as 0 -- ?7r/2 (see p. 314 of [3]). This means that aw/la = 0 at 
0 = ?ir/2, and so the conclusion follows. o 
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Lemma 7 (see [6]). For any u E C(O, T; L2(S)) 

2(3tu(t), u(t)) = 35ItU(t)112 - Tlk5JU(t) 112. 

Lemma 8 (see [6]). Assume that 
(i) E(t) is a nonnegative function defined on RT, 
(ii) p, bi, b2, d, and d2 are nonnegative constants, 
(iii) for t EAT 

t-T 

E(t) < p + TZ(d,E(t') + d2MblEb2+l (t')) 
t'=O 

(iv) E(O) < p and pe(dl+d2)tl < M-bl/b2 
Then for all t E RT and t < ti 

E(t) < pe(dl+d2)t 

If in addition d2 = 0, then for all p and t < T 

E(t) < pedlt. 

4. GENERALIZED STABILITY OF THE SCHEME 

As is known, nonlinear schemes are usually not stable in the sense of Lax, 
but might be so in the sense of generalized stability [6, 18]. We now analyze 
the generalized stability of scheme (2.5). Suppose that ii(0), fi and f2 have 
errors 40o fi and 12, respectively. They induce errors of ?I and (p, denoted 
by q and 0. Then 

(5A4(t), v) + (J(q(t) + bTrT3(t), p (t) + @(t)), v) 
+(J(?I(t) + bTzr,I(t) , r(t)), v) - v(A(q(t) + OT5Tqt(t)), v) 

(4.1) = (i(t) V), 5VV E VM, t E RP, 

-(Ao(t), v) = ((t) + f2(t), v), Vv E VM, t E RT, 

0( t)=O t E RT, 

4(0) = 4o - 

By taking v = 24 in the first formula of (4.1), we have from Lemmas 6 and 
7 that 

J.ITI 4(t)112 - TIIkT5(t)I12 + 2vf 4(t) 12 + VaT5TI4 (t) 12 - VT 21T(t) 12 + Fl (t) 
- 2bT(J(q(t), q(t) + @ (t)), 5T q(t)) = 2(fi (t), 4(t)), 

where 
F, (t) 2 2(J (?I(t) + bT(T?I6(t), f (t)), 6 (t)). 

Next, let d be an undetermined constant. By taking v = dT5T 4 in the same 
formula, we get 

(43) dzrlk5r(t) - -vd TzT I 4(t) | 2+ v dT2 (a - )k5T 4 (t) 12 + F2(t) 

+ dT(J(4(t) , 4p(t) + @(t)), 5 4(t)) = dT(f1 (t), o 3T(t)), 

where 
F2(t) = dT(J(I(t) + bT1TI (t) , 0(t)), I 5T(t)). 
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Putting (4.2) and (4.3) together, we obtain 

tIri (t)112 + T(d - 1)11634(t)112 + 2vIi1(t)12 + VT (a + 6)jt(t)12 

(4.4') 4 

+ VT2 (dc - ci - d r4(t)I2 + a Fj(t) = (fit(), 2i1(t) + dTt53P(t)), 
j=1 

where 

F3(t) = T(d - 2b)(J(q (t), q (t)), 5T?(t)), 

F3(t) = T(d - 2b)(J(4(t), 0 (t)), 5 4(t)). 

Furthermore, we put v = 0 in the second formula of (4. 1) and obtain 

10(t)1l2 < I 110(t)112 + C(Ilq(t)112 + lif2()l) 

Thus, Lemma 2 leads to 

(4.5) 20(1)1? < c(jjf(t)jj2 + 112(t) 112). 

Moreover, by Lemma 2 and (4.5), 

ll0(t)12 ? c(110(t)112 + IIAO(t)112).< C(1Ii(t)112 + lif 

We now estimate the IFj(t)I. Let e > 0 and 

IllUllir= max IIU(t)llr, [lIUIllr,o = max IIU(t)Ir,o,o, etc. 
O<t<T O<t<T 

By Lemma 1, Lemma 6 and (4.5), we know that for any P > 0, 

IF,(t)I = 12(J(q(t), f (t)), ? l(t) +btT6-r(t))I 

< eVlI(t)l1 + C I 1111112 10(t)12 

< ,CVI(t)l2 + CSIIInIII?2+fl(I(t)II2 + l112(1)11). 

Similarly, 

216Tq t)12 cd21 2 )I i IF2(t)I ? eir2k5T?(t)l? + -V IlI?+f(II6(0II2 + 2(11 ). 

Furthermore, Lemma 3 leads to 

IF3 (t)I < 8TII5q(t) 112 + CT(d - 2b)2 1 
1 1 p I 1 l 1 -(t) 12 

Since 

11(p(t)112 ' C(II((t)112 + IIA(p(t)112) < C(11?1(t)112 + lif2)l) 

we have from Lemma 4 that 

|F3(t)| < erIk5T6(t)I12 + TMffl(d - 2b)2 (jII?jIjj2 + 111f21112)1-(t)I12 
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Also, by Lemma 3, Lemma 4 and the second formula of (4.1), we obtain 

jF4(t)j < ezII3Ai?(t) 112 + CT(d - 2b)2 2 I 

?1()II2 + cT(d - 2b)2 + Ilf2(t)jt4)ji1(t)j1 

? e (t )112 + cTMA(d - 2b)2 (1I-(t)112 + Ilf2(t)112)1(t)12. 

Finally, 

|(f1(t), i4(t) + dTJr5T(t))j | ezJIT5P(t)I 12 + Cjji0(t) I2 + c (I +-) I (t)||2. 

By substituting the above estimates into (4.4), we obtain 

(4.6) (5Ti0(t)II2 + r(d - I - 3e)jj3r71(t) j2 + vj1(t)jl + UT (a + 2) 5rji1(t) 

+ AoTzkrTO(t)l2 ? A1, 11(t)112 + A2(t)JI(t)J12 + A3(t), 

where 

Ao = VT (d a- a -E- 

A 1 = c ( 1 + 1 + d 2 

A2(t) = -V + + + C (d- 2b)2(1jjj7jj2 + 111f21112 + 1ji(t)112 + jlf2(t)jj2), 

A3(t) = c (1 + ed ) iiJx (t)12 + ..L( 1 + d2)11f2(t)jj2. 

Let po > 0 and E be suitably small. We choose the value of d in three 
different cases as follows: 

(i) a> 1/2. Wetake 

d >di= max (1+ 3e+Po, 2/? ) 2a-l1 

Then 

(4.7) I(d - 1 - 3e)114t(t)jj2 + AOTJIt(t)12 > POTIjjit(t)112. 
(ii) a = According to Lemma 4, there exists a positive constant q such 

that ju12 < qM2jjujj2 for any u E VM. We take 

d>d2= I+3e+pO+vqTM2 (+e), 

and so (4.7) holds again. 
(iii) a < I and TM2 < qv122a) . Then we take 

d > d _ 1 + 3E +PO + qVTM2 (a +E) 
1 + qVTM2(a-I ) 

It can be verified that (4.7) is still fulfilled. 
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Now, let 

t-T 

E(t) = llq(t)112 + TE(Vl(Z))12 +pOTI16Tq(Z)I12), 
z=O 

d A t-T 

p(t) = ll7(O)112 + VT (a + _+ rA3(z). 
z=O 

By summing up (4.6) for t E RT, we obtain 

t-T 

(4.8) E(t) < p(t) + T (AiE(z) + A2(z)E2(z)). 
z=O 

Finally, by applying Lemma 8 to (4.8), we get the following result. 

Theorem 1. Assume that 

(i) zM-8 is suitably small, fl being an arbitrarily small positive constant, 
(ii) a > I or TM2 < 2 

2 qv(1-2a) 
(iii) jjf2(t)jj < b1 and p(t) < b2 for t < t1, 

where t1 < T, b1 and b2 are suitably small constants depending only on 
IIIN1III1+B S 111f2111 and v. Then for all t < t1 

(4.9) E(t) < p(t)eb3t. 

We now consider a special case, i.e., 

2b > d1 for a > I 

(4.10) 2b>d2 fora= I 

I 2b > d3 for a < 1 

Then we can take d = 2b and so A2 = -v. Thus, the following conclusion 
follows. 

Theorem 2. Let a > Ior2 q(1- 2a) < If in addition (4.10) is fulfilled, 
then (4.9) holds for all f2(t), p(t) and t < T. 

5. CONVERGENCE 

In this section, we deal with convergence. By (2.4), 

-PMAU( ,6)= z z n(n +1)tm,nYm,n() f9) 
Iml<M n>lml 

= - Z Z t'Um,nAYm,n(A) 4) =6-APMU(A, 0). 
Iml<M n>lml 

Let 4(M) = PMX and y1(M) = PMVI. Then from (2.3) we obtain that for all 
V E VM 
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(3K(M)(t), v) + (J(4(M)(t) + bT,3p4(M) (t) ig(M)(t)) v) 

+v(VMV(M)(t) + zTbT3(M)(t)), Vv) 

(5.1) | = (z 1 Gj(t) +fi(t), v) + (VG4(t), Vv), t EAT 

(VV,I(M)(t), Vv) = (4(M)(t) + f2(t) , v), t E R 
A(W )()) O,t RT 

4(M) (0) = PMcO, 

where 

G1 (t) = -T4(M)(t) o7t 

G2(t) = bTJ(6T4(M) (t), ,(M)(t)), 

G3 (t) = J (4(M) (t) I {(M) (t)) - J(4(t) v(t)) 

G4(t) = arT&(M)(t). 

Next, let q - V(M) + , and (p W(M) + i. Then we have from (2.5) and (5. 1) 
that for all v E VM 

(545(t), v) + (J(4(t) + bz3@T(t), yi(M)(t) + @(t)), v) 
+(J(&M)(t) + bzTT(M) (t) , i(t)), v) + v(A(4(t) + aT&r (t)), V) 

= - (z-l G=(t), v) - (VG4(t), Vv), t e AR, 

(A (t)=, v) V) t E RT 

(V/ (0ft) = O, t E RT 
4(O) = 0. 

Clearly, we can get the same estimate as in (4.9). But il and JI are replaced by 
4 and (, respectively, and p(t) is replaced by 

t-T 

p~3(t) = TZ(IIG1(z)112 + jjG1(z)112 + 1IG3(z)II2 + 1G4(z)I2). 
z=O 

According to 

1 tT O2~ 
c54(t) - t(t) - ] (t + T z)- y. (z) dz, 

we have 
t-T 

TE, glGlz)ll2 <ct IIXIH2 (O t; L2 (S)) 
Z=O 

By Lemma 3 and Lemma 5, 

jIG2(t)jj2 < CT2||W(M) I | 12+p| (t) 2< CT2 | | I 1 12+8 A t 

< ct2(lIgtI)12 + Illf 1 |T|j|III2|l| 
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Furthermore, for r > 0, 

||G3(t)1|2 < cIIV('M)(t)II2+flOI$M)(t) (II + cII$M)(t)IIiIIy'#M)(t) - v(t)I+fl 

< CM-2r(IIIVIII2+fiIIgIIII2+ + IIIIIIII+21111l+r2 ) 

< CM-2r[(IgIIII2I + Il!f2III )IIIXIIIl+r + (IgIIII12+r + Illf2III4+r)IIIXIIIji 

Finally, 

IG4(t)I < CT2 a t 
Therefore, p(t) = O(T2 + M-2r), and so we obtain the following results. 

Theorem 3. Let r > 0 and I8 be arbitrarily small positive constants. Assume 
that 

(i) (4.10) or condition (i) of Theorem 1 holds, 
(ii) condition (ii) of Theorem 1 is satisfied, 
(iii) 4 E C(O, T; HI+r(S)) n CI(O, T; H1(S)) n H2(0, T; L2(S)) and f2 E 

C(O, T; Hfl+r(S)). Then, for all t < T, 

II4(t) 12 < b*(T2 + M-2r 

where b* is a positive constant depending only on the norms of 4 and f2 in the 
spaces mentioned above. 
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